Предыдущие части здесь.
За последние пару десятков лет учёным удалось открыть несколько сигнальных маршрутов в организмах животных и регуляторов, отвечающих за продление жизни. К их числу относятся инсулиновый и инсулиноподобный факторы роста 1 (IGF-1), мишень рапамицина млекопитающих (mTOR, mammalian target of rapamycin) и сиртуины. Сиртуин 1 (Sitruin 1), — протеин, который кодируется у человека геном SIRT1. Исследований по этому протеину, гену, и его активации сегодня хватит, чтобы заполнить грузовик, и это, конечно, все равно недостаточно.
Нас интересует лишь один аспект работы этого комплекса – продление жизни. Сиртуины были найдены за работой по адаптации метаболизма к изменениям в диете и поддержке гомеостаза у млекопитающих. Так, например, активация гена, кодирующего эти протеины, была обнаружена в условиях ограниченного питания. Упрощённое объяснение – когда организм находится в условиях ограниченного питания, организм посредством этого комплекса пытается регулировать и отчасти консервировать свою деятельность, что приводит к положительным изменениям, в частности к продлению жизни и омоложению. К слову, впервые концепцию ограничения питания как метод достижения хорошего здоровья и долгой жизни сформулировал Экикен Каибара, японский философ, в 1713 году. Он скончался на следующий год в возрасте 84 лет, что по меркам 18 века было очень неплохо.
Вот почему многие надежды у людей связаны с диетой с ограниченным содержанием калорий. Вот почему ещё большие надежды связывались с методами и компонентами, которые могли бы мимикрировать такую диету в организме – например, деятельность резвератрола, молекулы, действие которого в организме приводит к активации/деактивации части тех же генов, что и при диете с ограничением калорий.
Что будет, если мимикрировать эффект диеты напрямую, путём производства сиртуина в организме? В сентябрьском номере журнала Cell Metabolism, профессор Шин-ичиро Имаи с коллегами опубликовали работу (Satoh et al., 2013), которая и ответила на этот вопрос.
Диета с ограниченным питанием существенно увеличивает уровень протеина Sirt1 и вызывает нейронную активацию в дорсомедиальном и латеральном гипоталамическом ядре (dorsomedial and lateral hypothalamic nuclei), чего не происходит у мыши с дефицитом Sirt1. Возникла гипотеза, что именно эти изменения в гипоталамусе защищают связанное со старением снижение митохондрических функций в скелетных мускулах, изменения в физической активности, температуре тела, потреблении кислорода и качестве сна.
Для изучения работы сиртуина была создана мышь со сверхэксперессией гена SIRT1 в большинстве тканей организма и мышь-BRASTO (brain-specific Sit1-overexpressing) – где увеличенное производство сиртуина происходит только в головном мозге.
Мышь со сверхэкспрессией SIRT1 во всем теле не показала какого-либо существенного продления жизни. А вот BRASTO оправдала надежды. Профессор Имаи со своей командой показали, что у 20-ти месячной крысы (эквивалент 70 летнего человека) показатели здоровья и активности были аналогичным 5-ти месячному возрасту (20 летнего человека). В среднем продолжительность жизни увеличилась на 16% для самочек и 9% для самцов. Если перенести это на людей, то это равнозначно 14 дополнительным годам для женщин и лет 7 для мужчин. Иначе говоря, для женщин это означало бы продление жизни до 100 лет, для мужчин – до 80 с половиной.
Причём мыши могли есть сколько угодно, безо всякого ограничения, в любое время. BRASTO мышки лучше и крепче спали. Смерть от рака для них откладывалась, в сравнении с контрольной группой. Имаи заметил, что изменения говорят не о замедлении процесса старения, а об его откладывании; скорость старения при этом не изменялась.

Выше: Модель роли гипоталамического Sirt1 в регулировании старения и продления жизни у млекопитающих. В гипоталамусе, а именно, в дорсомедиальном и латеральном гипоталамическом ядре, Sirt1 повышает экспрессию Ox2r (рецептор орексина второго типа) и нейронную активацию. Увеличенная нейронная активация в гипоталамусе стимулирует отдел симпатической нервной системы и поддерживает митохондрические функции скелетной мускулатуры, а также тонизирует физическую активность, температуру тела и потребление кислорода. Одновременно сохраняется «молодое» качество сна в процессе старения. Все это поддерживает физиологические характеристики, присущие молодости и приводит к продлению жизни.
Это, несомненно, интересное открытие, которое послужит отправной точкой для многих исследований. Практически, для человека, сейчас это не означает почти ничего: нельзя заново родиться с повышенной экспрессией какого-то гена в гипофизе. Изменить экспрессию этого гена с помощью химических или физических методов тоже возможности пока нет. Но меня заинтересовала возможность такой специфической активации гипоталамуса посредством исключительно психологических методов, и возникла пара идей, которые я собираюсь проверить. Преимущество таких методов – в том, что можно не ограничиваться одним феноменом – на сиртуинах свет клином не сошелся. Одна из идей касается нейронной обратной связи – возможности с помощью ЭЭГ (и не только) «увлечь» мозг идеей омоложения и продления жизни. Конечно, у меня нет возможности отслеживать активацию протеинов в гипоталамусе, но, как видно, есть множество других переменных второго порядка. Да вот прям сейчас и приступлю…
Satoh, A., Brace, Cynthia S., Rensing, N., Cliften, P., Wozniak, David F., Herzog, Erik D., . . . Imai, S.-i. (2013). Sirt1 Extends Life Span and Delays Aging in Mice through the Regulation of Nk2 Homeobox 1 in the DMH and LH. Cell metabolism, 18(3), 416-430.
Картинка в начале статьи — сиртуин (Visual Science)
Японские ученые (Kojima et al., 1999) проводили поиск и исследования препаратов, которые стимулировали бы производство гормона роста путем воздействия на переднюю долю гипофиза (anterior pituitary gland). Однако они нашли неизвестный до тех пор рецептор, что означало, что есть еще путь для сигналов производства гормона роста. Так в 1999 году была обнаружена молекула, которая действовала на этот рецептор — гормон грелин (ghrelin). И хотя рецептор для грелина находится в гипофизе, производится он в желудке (и частично, в гипоталамусе), откуда попадает в кровь и доходит до мозга. Прошло немного времени, и выяснилось, что основная роль грелина – не в стимуляции производства гормона роста, а в стимулировании аппетита. Вскоре было обнаружено, что концентрация грелина в крови меняется в течение дня, повышаясь перед приемом пищи и снижаясь после еды. Так его назвали даже гормоном голода.
На графике видно, как концентрация грелина в плазме крови меняется в течение дня (адаптировано из Cummings et al, 2001).