Гугловский сервис DeepDream дает возможность обработки изображений через программу, которая «видит» странных животных и объекты в картинке. Так, выше – что я сделал с картинкой авокадо с помощью DeepDream (7 уровень, весьма глубокий, по клику открывается в полный размер). Оригинал:
Как пишет википедия, «программа была написана для нахождения на картинках лиц и других паттернов, с целью автоматической их классификации». Но если программу продолжать натравливать на картинку для более глубокого поиска, тогда она и начинает находить лица и паттерны, там, где их, собственно, нет. Ну, или для любителей философии, там, где их не видит человек. А может авокадо так и выглядит на самом деле? :)
Картинки при этом получаются похожими на зрительные галлюцинации человека под психоделиками (по мнению опытных пользователей). Факт этот любопытен тем, что может означать функциональное сходство между зрительной корой человека и нейронной сетью искусственного интеллекта.
Еще одно недавнее исследование: ученые (Radford, Metz, & Chintala, 2015), тренируя особый тип нейронных сетей, generative adversarial networks, научили компьютер генерировать дизайны помещений (вполне неплохие, кстати), и лица людей. Так, давая фотографии улыбающихся женских лиц, дали задание выделить концепцию «улыбки» и соединить ее с концепцией «мужчина». В результате получается коллекция улыбающихся мужских лиц несуществующих людей. Пока еще, конечно, не совершенно, но сети учатся быстро.
Как отмечает автор статьи в New Scientist (Aron, 2015), вполне скоро мы могли бы искать картинки в Гугле по описанию – сама картинка будет генерироваться на лету и будет абсолютно уникальна.
Недалек тот день, когда искусственный интеллект будет создавать гораздо лучшие и картины, и дизайны, как зданий, интерьеров, так и любых механизмов и приборов, и всего остального. Чем займемся мы – вот вопрос, на который пора начать отвечать.
Aron, J. (2015). Computer’s imagination creates human faces. New Scientist USA. December 5, 2015.
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv.org. http://arxiv.org/abs/1511.06434